TRANS-OCEANIC INSECT DISPERSAL

\author{

1. Trapping and collecting on ships in the South Pacific Ocean, 1974-1979
}

K.A.J. WISE
AUCKLAND INSTITUTE AND MUSEUM

Abstruct. An introduction to this series mainly covers the Bernice P. Bishop Museum, Honolulu, projects on arthropod dispersal, 1957-1970. Continuation of these studies from the Auckland Museum started with collecting on ships at sea since 1965 and ship-board trapping in the South Pacific area in 1969.

Part 1 of the series records net-trapping on ships during regular return voyages from New Zealand through Fiji, Samoa and Tonga in the South Pacific Ocean. Trapping and collecting on 29 voyages between 1974 and 1979 are reported. Tables and maps of successful net runs and collections are included. Voyages are compared and preliminary insect and other arthropod results noted.

In the late 1950s and early 1960s, the late J. Linsley Gressitt, of Entomology Department, Bernice P. Bishop Museum, Honolulu, began investigating wind-borne insects by trapping on ships and with aircraft in the Pacific Ocean and Antarctic areas. Subsequently, trapping was also done on ships in the Atlantic and Indian Oceans and on land in Antarctica, on subantarctic islands and in northern Alaska as part of trans-oceanic arthropod dispersal studies.

Antarctic and subantarctic trapping so far reported continued until 1966 and in the Pacific and other areas until 1970.

Results of trapping and collecting on ships in the Pacific area, 1957-1970, have been recorded in a numbered series of papers by Gressitt \& Nakata (1958), Yoshimoto \& Gressitt (1959, 1960, 1961), Harrell \& Yoshimoto (1964), Harrell \& Holzapfel (1966), Holzapfel \& Perkins (1969), Guilmette, Holzapfel \& Tsuda (1970) and Holzapfel, Clagg \& Goff (1978). All these records were for the North Pacific area except for a few collections made on two ship passages which included Samoa (Holzapfel \& Perkins (1969), Society Is and further south, and the Galapagos Is (Holzapfel, Clagg \& Goff 1978). Concurrent trapping for smaller organisms, which produced some arthropod specimens, was also done on three voyages between 1967 and 1970 (Kramer, Wartell \& Holzapfel 1973).

Trapping results from two other ship expeditions were also reported per the Bishop Museum project. During the round-the-world 'Galathea' Expedition, 1950-1952 (Yoshimoto, Gressitt \& Wolff 1962), successful trapping had been done throughout the whole cruise including catches around New Zealand and in the South and North Pacific. Catches were also made in the North Pacific, South Pacific and in the New Zealand area during the 'Monsoon' Expedition, 1960-1961 (Gressitt, Coatsworth \& Yoshimoto 1962).

Two numbered papers on trapping in the Pacific-Antarctic area (Yoshimoto. Gressitt \& Mitchell 1962, Yoshimoto \& Gressitt 1963) included results from ship-board trapping on North and South Pacific voyages and south of New Zealand. The first of three papers on trapping in the Antarctic area (Gressitt, Leech \& O’Brien 1960) gave results from ship-board trapping between New Zealand and Antarctica and around the continent to South America in the 1959-60 Antarctic summer season. Net trapping was also done with small aircraft and on the ground in the Ross Sea sector of Antarctica in the same season. A second paper (Gressitt, Leech, Leech, Sedlacek \& Wise 1961) recorded net trapping in the 1960-61 season on ships south of Australia, New Zealand and South America and on land in the Ross Sea and Antarctic Peninsula sectors.

During the course of a separate project by Madison E. Pryor, of University of Tennessee, U.S.A., trapping for air-borne arthropods on land in the Ross Sea sector of Antarctica had also been done in the 1959-60 season (Pryor 1962),

Further trapping on ships and on land in Antarctica between the 1959-60 and 1961-62 seasons was noted by Gressitt, Leech \& Wise (1963).

Dispersal studies for the Bishop Museum project were extended to the Atlantic area in 1962 by ship-board trapping on a United States Antarctic survey ship (Holzapfel, Tsuda \& Harrell 1970) and on British Antarctic Survey ships from 1962 to 1965 (Clagg 1966).

A third paper on trapping in Antarctica (Holzapfel, Tsuda \& Harrell 1970) contained results of ship-board trapping on many voyages south of New Zealand and South America from 1963 to 1966 and also on Atlantic, South Pacific and Indian Ocean voyages from 1962 to 1965 .

Net trapping on land in relation to trans-oceanic dispersal was also carried out on two subantarctic islands, Campbell I, 1961-62 (Gressitt 1964b) and South Georgia, 1962-64 (Gressitt 1970).

Further dispersal studies by net trapping were made north of the Arctic Circle in northern Alaska in the Arctic summers of 1966 and 1969 (Gressitt \& Yoshimoto 1974).

A high speed trap developed for use on large aircraft was first used in the 1960-61 Antarctic season (Gressitt, Sedlacek, Wise \& Yoshimoto 1961) on flights between Antarctica and the east coast of the United States, via New Zealand and Honolulu, and subsequently over the North Pacific Ocean. Results of flights, including North America/Antarctica and also North Pacific flights, from 1960 to 1963, were reported by Holzapfel \& Gressitt (1965). Final results covering use of this trap over the North Pacific Ocean and the United States from 1966 to 1969 were given by Holzapfel (1978). Concurrent trapping for smaller organisms was also done with this trap in 1968-69 (Kramer \& Holzapfel 1973).

An overall discussion on Bishop Museum trans-oceanic dispersal studies in the 1957-1966 period was published by Holzapfel \& Harrell (1968).

The dispersal studies and results have supplied more data towards the understanding of trans-oceanic arthropod movement and distribution. J.L. Gressitt assessed the information in many biogeographical discussion papers (Gressitt 1961, Gressitt \& Yoshimoto 1963, Gressitt 1964, 1965a, 1965b, 1967, 1970, 1974).

Identifications of some of the arthropod specimens trapped and collected during the Bishop Museum dispersal studies have been recorded and discussed separately (Thornton 1964, Yoshimoto \& Gressitt 1964, Thornton \& Harrell 1965, Yoshimoto \& Gressitt 1965, Scudder 1968, Forster 1971, Zimmerman 1975). In a summary to the Insects of Campbell Island Monograph, Gressitt (1964b) listed identified species of insects taken in net traps on Campbell I, but only a few of these are recorded as such in the taxonomic papers in the Monograph.

From 1965, when the present author took up his current position in the Auckland Museum, his interest in insect dispersal was continued with the assistance of a keen bird-watcher, J.A.F. Jenkins, who was then a deck officer on ships sailing from New Zealand ports. Jenkins collected insects for the Auckland Museum at various overseas ports on western routes to Australia and India and in the Pacific Islands while also, by request, watching for, collecting and recording insects at sea.

In 1969, net trapping was done for the author during the Royal Society of New Zealand Cook Bicentenary Expedition in the South Pacific, 1969, and the results of trapping and collecting on HMS Endeavour were recorded (Wise 1971).

However, all the collecting on ships at sea had been sporadic, using ships on various routes at various times just as and when they became available and when passage for collectors could be obtained. Consequently, in 1974, when Jenkins (now Captain) offered to start net trapping as often as possible on regular shipping runs in the South Pacific he presented an opportunity for comparable sampling over a longer period. Further, the route to and from the Pacific Islands was northerly and southerly, as well as being amongst some of the island groups, giving an opportunity to test the effect of easterly tradewinds in the tropics against the general west-east drift.

Information presented here is the result of trapping and collecting on ships at sea during 29 voyages in the period 1974-1979.

SOUTH PACIFIC OCEAN, 1974-1979

METHODS

Union Shipping Company voyages are numbered for each vessel and these voyage numbers are used here. Captains are in command of vessels for several voyages at a time then are replaced for several, hence the intermittent voyage numbers which appear in the records. Captain Jenkins flew nets on most of his voyages and consecutive sample numbers were used through each group of voyages. The voyages were made on regular triangular courses, as indicated in Fig. 1, beginning and ending at Auckland, New Zealand, and proceeding through Fiji, Samoa and Tonga.

The voyages reported on here are listed in Table 1, together with numbers of net runs, net samples, net runs with specimens, collected specimens and some percentages. It is seen that a large number of net runs were made and large numbers of samples taken $(92.87 \%$ in all). Of these a little less than half contained arthropod specimens (43.51% of net runs, 46.85% of net samples).

Fig. 1. Routes of ships on Pacific Islands voyages.

Table 1. Net runs, samples and collections on Union South Pacific and Marama voyages, 1974-1979.

[^0]The nets used were similar to those used previously (Yoshimoto \& Gressitt 1960, Wise 1971), being fine fabric cones on steel rings 75 cm in diameter; usually flown four or more at a time. Sample numbers were given when samples were taken from nets but collected specimens were sometimes numbered and sometimes not.

In the Museum all samples have been sorted under a microscope and those containing arthropod material stored in alcohol, except for the occasional large insect, such as a moth, which was pinned. Printed labels indicating ship, voyage and sample have been added together with other relevant data.

The data presented here in tables (Tables 2-30) and maps (Figs. 2-25) only include information concerning successful net runs (that is, when the samples taken were found to contain arthropod material) and hand collected specimens. Data presentation in tables is in much the same format as in all previous papers. However, it is considered worthwhile to include here maps for all the voyages in the present series to show the extent of successful net runs and collections, and the recurring mid-oceanic catches. The maps will also enable comparison of catch runs voyage by voyage and month by month and, in due course, of occurrences of various families or species of Arthropods.

As identification of all insect and other arthropod material is still in progress, the specimen records are given here only in general terms. It is intended to present information on species and possible sources of specimens in later parts of this series.

RESULTS

In the first year of the series, 1974, samples were taken during net trapping on five voyages of the Union South Pacific (USP 19, 20, 28, 31, 32 [part], Tables 2-6, Figs. 2-6). Many successful net runs were made, mostly near New Zealand and amongst the Pacific Islands.

There were five Union South Pacific voyages when samples were taken in 1975 (USP 32 [part] 35, 36, 39, 40, Tables 6-10, Figs. 6-10), but USP 32 samples were negative. Most successful net runs were amongst the Pacific Islands but there were also some mid-oceanic catches.

No net trapping was done in 1976 and 1977.
Trapping was resumed on the ship Marama in 1978, when samples were taken on nine voyages ($M 1,4,5,6,10,11,12,13,24$ [part], Tables 11-18, 21, Figs. 11-16, 18). Successful net runs were again mostly amongst the Pacific Islands but several were mid-oceanic and some near New Zealand.

Finally, in 1979, there were ten successful voyages for samples on the Marama (M 24 [part], 25, 30, 31, 32, 37, 38, 42, 43, 46, Tables 21-30, Figs. 18-25). Most of the successful net runs were mid-oceanic and amongst the Pacific Islands.

Monthly comparisons

Over the whole period, samples with specimens were taken in each month except November, indicating wind dispersal during the mid-year southern winter, as well as in the summer.

For comparison, the voyages are here listed for the months in which they were made.
January $\quad M 1$ (Table 11, Fig. 11), M 24 [part] (Table 21, Fig. 18), M 25 (Table 22, Fig. 19).
February USP 35 [part] (Table 7, Fig. 7).
March USP 35 [part] (Table 7, Fig. 7), USP 36 (Table 8, Fig. 8), M 4 (Table 12, Fig. 12), M 5 (Table 13, Fig. 12), M 6 [part] (Table 14, Fig. 13).
April $M 6$ [part] (Table 14, Fig. 13), M 30 (Table 23, Fig. 20), M 31 [part] (Table 24, Fig. 21).
May USP 19 (Table 2, Fig. 2), USP 20 (Table 3, Fig. 3), USP 39 (Table 9, Fig. 9), USP 40 (Table 10, Fig. 10), M 31 [part] (Table 24, Fig. 21), M 32 (Table 25, Fig. 21).
June $\quad M 10$ (Table 15, Fig. 14), $M 11$ (Table 16, Fig. 15).
July $\quad M 12$ (Table 17, Fig. 16), M 13 (Table 18, Fig 16), M 37 (Table 26, Fig. 22).

August $\quad M 15$ (Table 19, Fig. 17), M 38 (Table 27, Fig. 23).
September $M 17$ (Table 20, Fig. 17), M 42 [part] (Table 28, Fig. 24).
October USP 28 (Table 4, Fig. 4), $M 42$ [part] (Table 28, Fig. 24), $M 43$ (Table 29, Fig. 24).
November Nil.
December USP 31 (Table 5, Fig. 5), USP 32 (Table 6, Fig. 6), M 24 [part] (Table 21, Fig. 18), M 46 (Table 30, Fig. 25).

ARTHROPOD DISPERSAL

The samples with specimens and the hand collections are recorded below in several categories. These categories have been arbitrarily chosen to give some indication of the importance of the arthropod specimens in regard to trans-oceanic dispersal.

Net trapped mid-ocean

The whole net run was $45 \mathrm{n} . \mathrm{ml}$. or more from land.
USP 19: 1. USP 20: B, D. USP 28: 2, 17, 20. USP 31: 1, 2, 5, 7, 25. USP 32: 27, 28, 30. USP 35: 8A. USP 36: 18. USP 39: 1, 17. USP 40: 19, 21, 23, 29, 31. $M 1: 1,2,3,4,8 . \quad M 6: 15,16,17,18,25 . \quad M 13: 44 . \quad M 24: 1,3,5,15$. M 25: 19, 31, 34, 35. M 30: 1, 2, 3, 4, 5, 6, 9. M $31: 13,14,15,24 . \quad$ M 37: $1,3,8$. M 38: $12,13,14,16,25,26 . \quad M 42: 1,4,5,7,21,22 . \quad M 43: 25 . \quad M 46: 16$.

Net trapped at sealoff shore (Pacific Islands)
One end of the net run was within $45 \mathrm{n} . \mathrm{ml}$. of the shore of one or more of the islands, or the whole run was amongst Pacific Islands.

USP 19: 2, 5, 6, 7, 8. USP 28: 6, 7, 10, 11, 12, 13, 14, 16. USP 31: 8, 10, 13, 17, 18. USP 32: 34, 35, 36, 37, 38, 39, 44. USP 35: 5, 6, 7, 8. USP 36: 19, 20. USP 39: 5, 9, 10, 11, 12, 13. USP 40: 25, 28. M 1: 6, 7, 10, 12. M 4: 1, 3, 4 . M 6: 23, 24, 29, 31. $\quad M 10: 6,10,11 . \quad M 11: 18,19,21,22,23,24,25 . \quad M 12: 38$, 39, 40. $\quad M 13: 48$. $\quad M 24: 6,8,10,12$. $\quad M 25: 24,25,26,27,28,29,30 . \quad M 30$: 7, 8, 10. \quad 3 31: 20, 23. \quad M 32: 26, 27. \quad M 37: $5 . \quad M 42: 10,12,18,19,20$. M 46: 9, 14 .

Net trapped at sealoff shore (New Zealand)
One end of the net run was within $45 \mathrm{n} . \mathrm{ml}$. of the New Zealand coast and off shore islands.

USP 28: 23. USP 32: 26. \quad 1: 18. $\quad M$ 5: $10 . \quad M 24: 17 . \quad M 25: 18,36$.
Net trapped in harbour (Pacific Islands)
On a few occasions nets were flown within a harbour and emptied before leaving.
USP 31: 19. USP 32: 42, 43. M 1: 13.
Collected mid-ocean
Winged specimens, some taken alive, collected $45 \mathrm{n} . \mathrm{ml}$. or more from land.
USP 31: 3, $6 . \quad$ USP 39: 15A.
Collected at sealoff shore (Pacific Islands)
Winged specimens taken within $45 \mathrm{n} . \mathrm{ml}$. of the shore.
USP 31: 9, 15. USP 32: 40. M 4:3. M 6: 1 collection. M 15: 1 collection. M 17: 1 collection

Collected in harbour (Pacific Islands)
Winged specimens taken aboard ship in harbour.
USP 20: 1 collection. USP 31: 15. USP 40: 1 collection. M 1: 2 collections. M 6: 1 collection. M 38: 1 collection. $M 46: 1$ collection.

Collected in harbour or after harbour visit (Pacific Islands)
Wingless specimens or others which appeared to be cargo associated.
USP 19: 3, 4, 1 collection. USP 28: 7A. USP 31: 12, 23. USP 32: 29. USP 39: 6.

Table 2. Union South Pacific Voyage No. 19 (J.A.F. Jenkins, May 1974).

Sample No.	G.M.T		Wind		Starting	Ending	Vessel		Approx. distance nearest land (n.ml.) \dagger	Arthropods
	Time	Date	True Dir.	Vel. (kts)	Lat. Long.	Lat. Long.	Speed (kts)	Course ${ }^{\circ}$		
1	2000	7.V. 74	ESE	15	$24^{\circ} 42^{\prime} \mathrm{S} \quad 176^{\circ} 58^{\prime} \mathrm{E}$	$21^{\circ} 20^{\prime} \mathrm{S} \quad 177^{\circ} 34^{\prime} \mathrm{E}$	14.5	009	Kadavu, Fiji 135	1 fly
2	2300	8.V. 74	SE	09	$19^{\circ} 07^{\prime} \mathrm{S} \quad 177^{\circ} 53^{\prime} \mathrm{E}$	$\begin{gathered} 18^{\circ} 14^{\prime} \mathrm{S} \quad 178^{\circ} 35^{\prime} \mathrm{E} \\ \text { (via Suva) } \end{gathered}$	Var.	Var.	Fiji 445	3 beetles 1 wasp
3	2300	$\text { 8.V. } 74$				$18^{\circ} 14^{\prime} \mathrm{S}$ 178 ${ }^{\circ} 35^{\prime} \mathrm{E}$			Fiji 445	1 earwig*
4	0530	10.V. 74	NNW	09	$16^{\circ} 06^{\prime} \mathrm{S} 177^{\circ} 00^{\prime} \mathrm{W}$	$15^{\circ} 28^{\prime} \mathrm{S} 174^{\circ} 35^{\prime} \mathrm{W}$	14.0	075	Niuafo'ou, Tonga 445	1 centipede*
5	1500	11.V. 74	Var.	03	Pago Pago	Apia	15.0	Var.	Samoa < 45	6 wasps 5 flies 1 beetle 1 psocid? 1 insect part
6	1900	12.V. 74	SE	13	$13^{\circ} 46^{\prime} \mathrm{S} \quad 171^{\circ} 46^{\prime} \mathrm{W}$	$14^{\circ} 52^{\prime} \mathrm{S} 172^{\circ} 41^{\prime} \mathrm{W}$	14.0	Var./205	Samoa 445	8 flies 5 moths 1 beetle
7	2220	$\begin{aligned} & \text { 13.V. } 74 \\ & \text { 14.V. } 74 \end{aligned}$	SE	18/24	$17^{\circ} 01^{\prime} \mathrm{S} 173{ }^{\circ} 40^{\prime} \mathrm{W}$	$\begin{gathered} 20^{\circ} 53^{\prime} \mathrm{S} \text { } 175^{\circ} 13^{\prime} \mathrm{W} \\ \text { Nuku'alofa } \end{gathered}$	14.0	205/Var.	$\begin{aligned} & \text { Tonga } 445 \\ & \text { Tonga } 445 \end{aligned}$	10 flies 1 spider*
8	1800	14.V. 74	ESE	20	Nuku'alofa	$22^{\circ} 16^{\prime}$ S $176^{\circ} 16^{\prime} \mathrm{W}$	14.5	Var./209	Tonga 445	1 weevil

Tables $2-30 \dagger$ n.ml. - Nautical mile. Note $-1 \mathrm{n} . \mathrm{ml} .=1.852 \mathrm{~km}$. \varangle Less than $*$ collected by hand
Table 3. Union South Pacific Voyage No. 20 (J.A.F. Jenkins, May-June 1974).

SampleNo.	G.M.T		Wind		Starting		Ending		Vessel		Approx. distance nearest land (n.ml.) \dagger	Arthropods
	Time	Date	True Dir.	Vel. (kts)	Lat.	Long.	Lat.	Long.	Speed (kts)	Course ${ }^{\circ}$		
B	2000	22.V. 74	E	09	$26^{\circ} 07^{\prime} \mathrm{S}$	$\begin{aligned} & 176^{\circ} 38^{\prime} \mathrm{E} \\ & \text { u'alofa } \end{aligned}$	$22^{\circ} 20^{\prime} \mathrm{S}$	$177^{\circ} 23^{\prime} \mathrm{E}$	14.5	008	Kadavu, Fiji 195 Tonga 445	1 wasp 2 moths*
		30.V. 74										
D	2000	31.V. 74	ExS	10	$27^{\circ} 02^{\prime} \mathrm{S}$	$178^{\circ} 45^{\prime} \mathrm{W}$	$30^{\circ} 30^{\prime} \mathrm{S}$	$178^{\circ} 50^{\prime} \mathrm{E}$	15.0	211	Kermadec Is 135	1 wasp
												1 fly?

Table 4. Union South Pacific Voyage No. 28 (J.A.F. Jenkins, October 1974).

$\begin{aligned} & \text { Sample } \\ & \text { No. } \end{aligned}$	G.M.T		Wind		Starting		Ending		Vessel		Approx. distance nearest land (n.ml.) \dagger	Arthropods
	Time	Date	True Dir.	Vel. (kts)	Lat.	Long.	Lat.	Long.	Speed (kts)	Course ${ }^{\circ}$		
2	2100	12.X. 74	NW	15	$32^{\circ} 19^{\prime} \mathrm{S}$	$175^{\circ} 44^{\prime} \mathrm{E}$	$29^{\circ} 06^{\prime} \mathrm{S}$	$176^{\circ} 24^{\prime} \mathrm{E}$	13.5	009	North Cape, NZ 184	1 fly 1 bug?
6	2100	14.X. 74	E	13	$21^{\circ} 50$ 'S	$177^{\circ} 35^{\prime} \mathrm{E}$	$18^{\circ} 28^{\prime} \mathrm{S}$	$178^{\circ} 14^{\prime} \mathrm{E}$	14.0	028	Fiji 45	1 fly
7 A		16.X. 74						uva			Fiji 445	$\begin{aligned} & 8 \text { beetles* } \\ & 6 \text { flies* } \\ & 5 \text { wasps* } \end{aligned}$
7	0600	16.X. 74	ENE	15	$17^{\circ} 26^{\prime} \mathrm{S}$	$179^{\circ} 33^{\prime} \mathrm{E}$	$16^{\circ} 27^{\prime} \mathrm{S}$	$178^{\circ} 21^{\prime} \mathrm{W}$	12.5	075	Fiji 445	1 beetle
10	1830	17.X. 74	E	05	$15^{\circ} 07^{\prime} \mathrm{S}$	$173{ }^{\circ} 24^{\prime} \mathrm{W}$	$14^{\circ} 27^{\prime} \mathrm{S}$	$170^{\circ} 50^{\prime} \mathrm{W}$	13.5	075	Samoa $\boldsymbol{4} 45$	2 flies 1 moth
11	0130	19.X. 74	Var.	02	$13^{\circ} 21^{\prime} \mathrm{S}$	$170^{\circ} 42^{\prime} \mathrm{W}$	$\begin{array}{r} 13^{\circ} 48^{\prime} \mathrm{S} \\ \text { (via } \end{array}$	$171^{\circ} 45^{\prime} \mathrm{W}$ Apia)	Var.	Var.	Samoa 45	30 flies 16 wasps 4 aphids 1 psocid
12	0530	19.X. 74	ESE	09	$13^{\circ} 44^{\prime} \mathrm{S}$	$171^{\circ} 47^{\prime} \mathrm{W}$	$14^{\circ} 04^{\prime} \mathrm{S}$	$172^{\circ} 17^{\prime} \mathrm{W}$	13.5	Var./205	Samoa < 45	1 fly 1 wasp bug parts insect parts
13	2200	19.X. 74	SE	20	$14^{\circ} 04^{\prime} \mathrm{S}$	$172^{\circ} 17^{\prime} \mathrm{W}$	$17^{\circ} 27^{\prime} \mathrm{S}$	$174^{\circ} 06^{\prime} \mathrm{W}$	13.5	205	Samoa 445	2 wasps
14	0530	20.X. 74	SE	24	$17^{\circ} 27^{\prime} \mathrm{S}$	$174^{\circ} 06^{\prime} \mathrm{W}$	$19^{\circ} 06^{\prime} \mathrm{S}$	$174^{\circ} 39^{\prime} \mathrm{W}$	14.0	201	Tonga 45	1 fly
16	2000	21.X. 74	ENE	09	$21^{\circ} 00^{\prime} \mathrm{S}$	$175^{\circ} 23^{\prime} \mathrm{W}$	$22^{\circ} 56^{\prime} \mathrm{S}$	$176^{\circ} 40^{\prime} \mathrm{W}$	14.0	209	Tonga 445	2 beetles
17	0530	22.X. 74	E	09	$22^{\circ} 56^{\prime} \mathrm{S}$	$176^{\circ} 40^{\prime} \mathrm{W}$	$24^{\circ} 30^{\prime} \mathrm{S}$	$177^{\circ} 36^{\prime} \mathrm{W}$	14.0	209	Ata, Tonga 45	1 wasp
20	2100	23.X. 74	SxE	05	$29^{\circ} 34^{\prime} \mathrm{S}$	$179^{\circ} 14^{\prime} \mathrm{E}$	$30^{\circ} 43^{\prime} \mathrm{S}$	$178^{\circ} 29^{\prime} \mathrm{E}$	Var.	Var.	Kermadec Is 129	insect parts
23	0600	25.X. 74	NxE	05	$33^{\circ} 59^{\prime} \mathrm{S}$	$176^{\circ} 14^{\prime} \mathrm{E}$	$35^{\circ} 20^{\prime} \mathrm{S}$	$175^{\circ} 22^{\prime} \mathrm{E}$	10.0	209	New Zealand $\mathbf{4} 45$	1 fly

fred sinq I	Stt ！！ 1	SLO／${ }^{\text {IE }}$ ¢	$S^{\circ} \mathrm{E}$ I	M，SIo8LI	S，sZo9I	G，9E08LI	S．tIo8I	$\varepsilon 1$	g	SL＇III＇LI	0002	02
ured snq I s̊ิnq z												
วฉวə૧ I sวl⿺ 7	St ifty	－IE Λ	0.71	ヨっちて。8LI	S，01．8I	ヨ，カセoLLI	S，SZo0z	60	］N	SL＇III＇91	0 090	61
p！̣de I	$8 L$ ！！！d＇nıepey	L00	0 OI	ヨ，カセoLLI	S，szo0z	B，STOLLI	SıIEのEZ	¢0	］N	SL＇III＇SI	0002	81
spodorułıV	t（＇ju＇u） 		$\begin{aligned} & \text { (S1Y) } \\ & \text { prods } \end{aligned}$	$\begin{gathered} \text { ®.8. } \\ \text { 8u!p } \end{gathered}$	pug	-8u07		$\begin{aligned} & (\mathrm{S}+\mathrm{y}) \\ & { }^{\mathrm{I}} \mathrm{~A} \Lambda \end{aligned}$	$\begin{aligned} & \cdot \pm!d \\ & { }_{\mathrm{M}}^{\mathrm{n} \perp \mathrm{~L}} \end{aligned}$		$0^{\text {әu! }}$	$\stackrel{\circ}{\text { ON }} \stackrel{\text { Idures }}{ }$

$\kappa_{[J]}$ ssinq z	OL B8ิuol	612	00 I	M，EI。ELI	S，0EのLI	M，LZoILI	SıLIoSI	S0	3N	SL＇III＇t	00L0	V8
	St rours	$\angle 90$	$\varsigma^{\circ} \mathrm{E}$ I	M，SlozlI	SıISoEI	M，tsosli	S，820SI	S0	GN	SL＇II＇8Z	00EZ	8
ıred KIJ I	e8iuol＇no，ojenin	$L 90$	$\varsigma^{\circ} \mathrm{EI}$	M，\dagger SOSLI	S，8Z。SI	M，90．8LI	S．わしく91	60	GNN	SL＇II＇8Z	0090	L
KlJ I	Stor！！	L90	$\mathrm{S}^{\circ} \mathrm{EI}$	M，9008LI	Sitlo91	ヨ Dlo6LI	S，980LI	EI	MN	SL＇II＇LZ	0002	9
	Sto ！！！d	LZ0／600	0.11	ヨ，2008LI	S،ZS．81	GıItoLlI	S．tIolて	60	ヨS	SL＇II＇9Z	ऽ［90	ς
spodorułILV	$f(\cdot \mid \omega \cdot u)$ риеן 15ว1ซวน 	$\text { - } 2 \mathrm{SInO} \underset{\text { [วSs }}{ }$	（ $\mathrm{s} \mid \mathrm{Y}$ ） prads	®uof		-8uo7	'IETS	$\begin{aligned} & (\mathrm{S} \mid \mathrm{Y}) \\ & \cdot \mathrm{\partial} \Lambda \end{aligned}$	$\begin{aligned} & \quad \pm!\square \\ & { }_{\mathrm{M}}^{\mathrm{M}} \mathrm{I} \mathrm{~L} \end{aligned}$	ә1еव L’	$D^{\text {әu!L }}$	$\stackrel{\text { ON }}{\text { Pd }}$

Table 9. Union South Pacific Voyage No. 39 (J.A.F. Jenkins, May 1975).

SampleNo.	G.M.T		Wind		Starting		Ending		Vessel		Approx. distance nearest land (n.ml.) \dagger	Arthropods
	Time	Date	True Dir.	Vel. (kts)	Lat.	Long.	Lat.	Long.	Speed (kts)	Course ${ }^{\circ}$		
1	0600	2.V. 75	ENE	13	$34^{\circ} 47^{\prime} \mathrm{S}$	$175^{\circ} 14^{\prime} \mathrm{E}$	$33^{\circ} 40^{\prime} \mathrm{S}$	$175^{\circ} 30^{\prime} \mathrm{E}$	13.5	009	Cape Brett, NZ 53	1 fly 1 fly larva 1 crustacean
5	2130	4.V. 75	Var.	02	$22^{\circ} 07^{\prime} \mathrm{S}$	$177^{\circ} 29^{\prime} \mathrm{E}$	$18^{\circ} 32^{\prime} \mathrm{S}$	$178^{\circ} 13^{\prime} \mathrm{E}$	14.0	006/029	Fiji 445	1 wasp
6		6.V. 75						uva			Fiji <45	1 cockroach*
9	2300	9.V. 75	NNE	09	$14^{\circ} 04^{\prime} \mathrm{S}$	$172^{\circ} 18^{\prime} \mathrm{W}$	$15^{\circ} 12^{\prime} \mathrm{S}$	$172^{\circ} 50^{\prime} \mathrm{W}$	15.0	205	Samoa <45	$\begin{aligned} & 1 \text { fly } \\ & 1 \text { bug nymph } \end{aligned}$
10	0500	10.V. 75	Var.	05	$15^{\circ} 12^{\prime} \mathrm{S}$	$172^{\circ} 50^{\prime} \mathrm{W}$	$16^{\circ} 30^{\prime} \mathrm{S}$	$173^{\circ} 29^{\prime} \mathrm{W}$	15.0	205	Tonga $\boldsymbol{4} 45$	1 fly 1 spider part
11	1900	10.V. 75	Var.	02	$16^{\circ} 30^{\prime} \mathrm{S}$	$173^{\circ} 29^{\prime} \mathrm{W}$	$19^{\circ} 32^{\prime} \mathrm{S}$	$174^{\circ} 50^{\prime} \mathrm{W}$	15.0	201	Tonga 445	1 fly
12	0030	11.V. 75	Var.	05	$19^{\circ} 32^{\prime} \mathrm{S}$	$174^{\circ} 50^{\prime} \mathrm{W}$	$20^{\circ} 50^{\prime} \mathrm{S}$	$175^{\circ} 12^{\prime} \mathrm{W}$	15.0	201/174	Tonga 445	1 wasp
13	0400	11.V. 75	Var.	05	$20^{\circ} 50^{\prime}$ S	$175^{\circ} 12^{\prime} \mathrm{W}$	Nuku	u'alofa	15/00	174/Var.	Tonga 4	4 wasps 1 beetle 1 bug
15A	2100	12.V. 75	Var.	02	$23^{\circ} 22^{\prime} \mathrm{S}$	$176^{\circ} 57^{\prime} \mathrm{W}$	$26^{\circ} 45^{\prime} \mathrm{S}$	$179^{\circ} 02^{\prime} \mathrm{W}$	14.0	209	Ata, Tonga 75	1 ant*
17	2000	13.V. 75	SSW	05	$28^{\circ} 30^{\prime}$ S	$179^{\circ} 49^{\prime} \mathrm{E}$	$31^{\circ} 26^{\prime} \mathrm{S}$	$178^{\circ} 03^{\prime} \mathrm{E}$	14.0	209	Kermadec Is 107	1 aphid

Table 10. Union South Pacific Voyage No. 40 (J.A.F. Jenkins, May 1975).

Sample No.	G.M.T		Wind		Starting		Ending		Vessel		Approx, distance nearest land (n.ml.) \dagger	Arthropods
	Time	Date	True Dir.	Vel. (kts)	Lat.	Long.	Lat.	Long.	Speed (kts)	Course ${ }^{\circ}$		
19	0000	17.V. 75	NW	09	$33^{\circ} 55^{\prime} \mathrm{S}$	$175^{\circ} 20^{\prime} \mathrm{E}$	$32^{\circ} 28^{\prime} \mathrm{S}$	$175^{\circ} 36^{\prime} \mathrm{E}$	14.00	009	Cape Brett, NZ 94	1 aphid
21	1900	17.V. 75	NE	09	$31^{\circ} 18^{\prime} \mathrm{S}$	$175^{\circ} 51^{\prime} \mathrm{E}$	$28^{\circ} 05^{\prime} \mathrm{S}$	$176^{\circ} 24^{\prime} \mathrm{E}$	14.00	009	North Cape, NZ 233	1 fly
23	2000	$\begin{aligned} & \text { 18.V. } 75 \\ & \text { 23.V. } 75 \end{aligned}$	E	15/30	$25^{\circ} 46^{\prime} \mathrm{S}$	$176^{\circ} 59^{\prime} \mathrm{E}$	$22^{\circ} 30^{\prime} \mathrm{S}$	$177^{\circ} 27^{\prime} \mathrm{E}$	13.5	007	Kadavu 202 Samoa 445	$1 \text { fly }$ 1 wasp*
25	0500	24.V. 75	ESE	15	$14^{\circ} 04^{\prime} \mathrm{S}$	$172^{\circ} 20^{\prime} \mathrm{W}$	$15^{\circ} 00^{\prime} \mathrm{S}$	$172^{\circ} 43^{\prime} \mathrm{W}$	14.0	205	Samoa 445	2 flies 1 wasp 1 bug 1 insect part
28	2000	25.V. 75	ExS	15	$20^{\circ} 19^{\prime} \mathrm{S}$	$175^{\circ} 10^{\prime} \mathrm{W}$	Nuku	'alofa	14.0/00	Var.	Tonga 445	3 flies 2 wasps
29	0500	27.V. 75	NW	09	$23^{\circ} 36^{\prime} \mathrm{S}$	$177^{\circ} 08^{\prime} \mathrm{W}$	$25^{\circ} 20^{\prime} \mathrm{S}$	$178^{\circ} 10^{\prime} \mathrm{W}$	14.0	209	Ata, Tonga 82	2 flies 1 wasp
31	0100	28.V. 75	Var.	02	$28^{\circ} 17^{\prime} \mathrm{S}$	$179^{\circ} 58^{\prime} \mathrm{W}$	$29^{\circ} 15^{\prime} \mathrm{S}$	$179^{\circ} 25^{\prime} \mathrm{E}$	14.0	209	Kermadec Is 78	1 fly 1 moth

Table 11. Marama Voyage No. 1 (J.A.F. Jenkins, January 1978).

Sample No.	G.M.T		Wind		Starting		Ending		Vessel		Approx. distance nearest land (n.ml.) \dagger	Arthropods
	Time	Date	True Dir.	Vel. (kts)	Lat.	Long.	Lat.	Long.	Speed (kts)	Course ${ }^{\circ}$		
1	0500	11.I. 78	$\begin{aligned} & \text { SW/ } \\ & \text { Var. } \end{aligned}$	09/02	$33^{\circ} 13^{\prime} \mathrm{S}$	$175^{\circ} 25^{\prime} \mathrm{E}$	$31^{\circ} 02^{\prime} \mathrm{S}$	$175^{\circ} 48^{\prime} \mathrm{E}$	16.5	008	Cape Brett, NZ 130	5 lacewings 2 flies 1 aphid
2	1930	11.1.78	Var./S	02/05	$31^{\circ} 02^{\prime} \mathrm{S}$	$175^{\circ} 48^{\prime} \mathrm{E}$	$27^{\circ} 03^{\prime} \mathrm{S}$	$176^{\circ} 27^{\prime} \mathrm{E}$	17.0	008	North Cape, NZ 250	1 weevil
3	0100	12.I. 78	S	05	$27^{\circ} 03^{\prime} \mathrm{S}$	$176^{\circ} 27^{\prime} \mathrm{E}$	$25^{\circ} 20^{\prime} \mathrm{S}$	$176^{\circ} 47^{\prime} \mathrm{E}$	17.0	008	Kermadec Is 330 Hunter I 314	1 fly
4	0700	12.I. 78	S	05	$25^{\circ} 20^{\prime} \mathrm{S}$	$176^{\circ} 47^{\prime} \mathrm{E}$	$23^{\circ} 37^{\prime} \mathrm{S}$	$177^{\circ} 03^{\prime} \mathrm{E}$	17.0	008	Kadavu, Fiji 277 Hunter I 289	1 spider
6	0130	13.I. 78	S	05	$20^{\circ} 20^{\prime} \mathrm{S}$	$177^{\circ} 39^{\prime} \mathrm{E}$	$18^{\circ} 23^{\prime} \mathrm{S}$	$177^{\circ} 17^{\prime} \mathrm{E}$	17.0	346	Fiji 445	1 wasp 1 bug
7	1830	15.1.78	ESE	15	$17^{\circ} 38^{\prime} \mathrm{S}$	$178^{\circ} 05^{\prime} \mathrm{W}$	$17^{\circ} 16^{\prime} \mathrm{S}$	$177^{\circ} 20^{\prime} \mathrm{W}$	16.0	066	Fiji 445	1 psocid
8	0100	$\begin{aligned} & \text { 16.I. } 78 \\ & \text { 17.I. } 78 \end{aligned}$	ESE	15	$\begin{array}{r} 17^{\circ} 16^{\prime} \mathrm{S} \\ \mathrm{Ap} \end{array}$	$177^{\circ} 20^{\prime} \mathrm{W}$	$16^{\circ} 27^{\prime} \mathrm{S}$	$175^{\circ} 23^{\prime} \mathrm{W}$	16.0	066	Niuafo'ou, Tonga 50 Samoa <45	$\begin{aligned} & 1 \text { fly } \\ & 2 \text { bugs* } \end{aligned}$
10	1830	18.1.78	E	09	$14^{\circ} 25^{\prime} \mathrm{S}$	$172^{\circ} 25^{\prime} \mathrm{W}$	$16^{\circ} 49^{\prime} \mathrm{S}$	$173^{\circ} 30^{\prime} \mathrm{W}$	18.0	205	Samoa 445	2 flies
12	0830	19.1. 78	E	13	$19^{\circ} 12^{\prime} \mathrm{S}$	$174^{\circ} 36^{\prime} \mathrm{W}$	$20^{\circ} 49^{\prime} \mathrm{S}$	$175^{\circ} 14^{\prime} \mathrm{W}$	17.5	168	Tonga 445	1 aphid
13	0200	20.1 .78	SE	18			Nuku	'alofa			Tonga 445	- 25 flies 16 wasps 2 ants 1 bug
18	0500	$\begin{aligned} & \text { 20.I. } 78 \\ & \text { 23.I. } 78 \end{aligned}$					Nuku	'alofa			Tonga 445	3 wasps*
18	0500		E	13	$32^{\circ} 59$ S	$177^{\circ} 22^{\prime} \mathrm{E}$	$35^{\circ} 28^{\prime} \mathrm{S}$	$175^{\circ} 44^{\prime} \mathrm{E}$	17.0	208	New Zealand $\mathbf{4} 45^{\text {d }}$	1 bug part

- More than.

yrou I Sว！L」 て	St puriedz M	800	S．LI	GıLIoSLI S،ESoEE		60 ヨSS	8L＇III＇II 0£60	01
spodoryııV	$f\left(\cdot{ }^{(W \cdot u}\right)$ puel 1 sәizeu әวuels！p＇xouddy	$\text { - }_{\text {ISSInO }}$	（S1Y） pardS					$\stackrel{\circ}{\text { on }}{ }^{\text {गdurs }}$

Table 15. Marama Voyage No. 10 (J.A.F. Jenkins, June 1978).

Sample No.	G.M.T		Wind		Starting		Ending		Vessel		Approx. distance nearest land (n.ml.) \dagger	Arthropods
	Time	Date	True Dir.	Vel. (kts)	Lat.	Long.	Lat.	Long.	Speed (kts)	Course ${ }^{\circ}$		
6	2100	2.VI. 78	SE	15	$20^{\circ} 58^{\prime} \mathrm{S}$	$177^{\circ} 23^{\prime} \mathrm{E}$	$18^{\circ} 14^{\prime} \mathrm{S}$	$177^{\circ} 12^{\prime} \mathrm{E}$	17.0	012/042	Fiji 445	insect parts
10	0100	10.VI. 78	SE	05	$13^{\circ} 53^{\prime} \mathrm{S}$	$172^{\circ} 12^{\prime} \mathrm{W}$	$15^{\circ} 05^{\prime} \mathrm{S}$	$172^{\circ} 54^{\prime} \mathrm{W}$	16.0	208	Samoa 445	2 flies insect parts
11	1000	10.VI. 78	SE	05	$15^{\circ} 05^{\prime} \mathrm{S}$	$172^{\circ} 54^{\prime} \mathrm{W}$	$17^{\circ} 08^{\prime} \mathrm{S}$	$173^{\circ} 57^{\prime} \mathrm{W}$	15.0	204	Tonga 445	6 flies insect parts

Table 16. Marama Voyage No. 11 (J.A.F. Jenkins, June 1978).

Sample No.	G.M.T		Wind		Starting		Ending		Vessel		Approx. distance nearest land (n.ml.) \dagger	Arthropods
	Time	Date	True Dir.	Vel. (kts)	Lat.	Long.	Lat.	Long.	Speed (kts)	Course ${ }^{\circ}$		
18	0900	19.VI. 78	E	15	19039'S	$176^{\circ} 53^{\prime} \mathrm{E}$	$18^{\circ} 18^{\prime} \mathrm{S}$	$177^{\circ} 02^{\prime} \mathrm{E}$	16.0	013	Fiji 45	1 aphid
19	0351	21.V1. 78	NE	15	180 ${ }^{\circ} 3^{\prime} \mathrm{S}$	$178^{\circ} 2^{\prime} \mathrm{E}$	$18^{\circ} 13^{\prime} \mathrm{S}$	$179^{\circ} 52^{\prime} \mathrm{W}$	16.5	083	Fiji 445	insect parts
21	0300	24.VI. 78	NE	09	$13^{\circ} 50^{\prime}$ S	$172^{\circ} 11^{\prime} \mathrm{W}$	$14^{\circ} 32^{\prime}$ S	$172^{\circ} 31^{\prime} \mathrm{W}$	16.0	205	Samoa 445	1 fly
22	0830	24.VI. 78	ENE	09	$14^{\circ} 32^{\prime} \mathrm{S}$	$172^{\circ} 31^{\prime} \mathrm{W}$	$15^{\circ} 58^{\prime} \mathrm{S}$	$173^{\circ} 09^{\prime} \mathrm{W}$	16.0	207	Tonga 445	1 ant
23	2000	24.VI. 78	Var.	02	$15^{\circ} 58^{\prime} \mathrm{S}$	$173^{\circ} 09^{\prime} \mathrm{W}$	$18^{\circ} 42^{\prime}$ S	$174^{\circ} 30^{\prime} \mathrm{W}$	16.0	201	Tonga 445	insect parts
24	2300	24.VI. 78	E	05	$18^{\circ} 42^{\prime} \mathrm{S}$	$174^{\circ} 30^{\prime} \mathrm{W}$	$19^{\circ} 29^{\prime} \mathrm{S}$	$174^{\circ} 49^{\prime} \mathrm{W}$	16.0	201	Tonga 445	insect parts
25	0300	25.VI. 78	WNW	15	$19^{\circ} 29^{\prime} \mathrm{S}$	$174^{\circ} 49^{\prime} \mathrm{W}$	$20^{\circ} 32^{\prime} \mathrm{S}$	$175^{\circ} 15^{\prime} \mathrm{W}$	16.0	201	Tonga 445	insect parts

Table 17. Marama Voyage No. 12 (J.A.F. Jenkins, June-July 1978).

Sample No.	G.M.T		Wind		Starting		Ending		Vessel		Approx. distance nearest land (n.ml.) \dagger	Arthropods
	Time	Date	True Dir.	Vel. (kts)	Lat.	Long.	Lat.	Long.	Speed (kts)	Course ${ }^{\circ}$		
38	0515	7.VII. 78	SE	05	$14^{\circ} 24^{\prime} \mathrm{S}$	$170^{\circ} 44^{\prime} \mathrm{W}$	$13^{\circ} 51$ 'S	$171^{\circ} 26^{\prime} \mathrm{W}$	17.0	311	Samoa 445	1 beetle
39	2100	7.VII. 78	Var.	05	$13^{\circ} 51^{\prime} \mathrm{S}$	$171^{\circ} 26^{\prime} \mathrm{W}$			17/00	Var.	Samoa 445	3 flies
40	0300	8.VII. 78	NE	05	$13^{\circ} 43^{\prime} \mathrm{S}$	$171^{\circ} 58^{\prime} \mathrm{W}$	$14^{\circ} 36^{\prime} \mathrm{S}$	$172^{\circ} 34^{\prime} \mathrm{W}$	16.5	205	Samoa 445	1 fly insect parts

Table 18. Marama Voyage No. 13 (J.A.F. Jenkins, July 1978).

Sample No.	G.M.T		Wind		Starting		Ending		Vessel		Approx. distance nearest land (n.ml.) \dagger	Arthropods
	Time	Date	True Dir.	Vel. (kts)	Lat.	Long.	Lat.	Long.	Speed (kts)	Course ${ }^{\circ}$		
44	0500	15.VII. 78	SW	18	$33^{\circ} 05^{\prime} \mathrm{S}$	$175^{\circ} 27^{\prime} \mathrm{E}$	$32^{\circ} 23^{\prime} \mathrm{S}$	$175^{\circ} 47^{\prime} \mathrm{E}$	17.0	009	Cape Brett, NZ 135	1 psocid
48	2100	19.VII. 78	NNE	13	$18^{\circ} 17^{\prime} \mathrm{S}$	$179^{\circ} 42^{\prime} \mathrm{E}$	$17^{\circ} 55^{\prime} \mathrm{S}$	$178^{\circ} 56^{\prime} \mathrm{W}$	16.0	053	Fiji 445	bug parts

Table 19. Marama Voyage No. 15 (for J.A.F. Jenkins, August 1978).

Sample No.	G.M.T		Wind		Starting		Ending		Vessel		Approx. distance nearest land (n.ml.) \dagger	Arthropods
	Time	Date	True Dir.	Vel. (kts)	Lat.	Long.	Lat.	Long.	Speed (kts)	Course ${ }^{\circ}$		
		22.VIII. 78	SE	18	$15^{\circ} 50^{\prime} \mathrm{S}$	$173^{\circ} 40^{\prime} \mathrm{W}$			16.5	064	Tonga 45	1 wasp*

Table 20. Marama Voyage No. 17 (for J.A.F. Jenkins, September 1978).

Sample No.	G.M.T		Wind		Starting		Ending		Vessel		Approx. distance nearest land (n.ml.) \dagger	Arthropods
	Time	Date	True Dir.	Vel. (kts)	Lat.	Long.	Lat.	Long.	Speed (kts)	Course ${ }^{\circ}$		
		25.IX. 78	SSE	13	$18^{\circ} 02^{\prime} \mathrm{S}$	$74^{\circ} 12^{\prime} \mathrm{W}$			17.0	206	Tonga 445	1 bug*

Table 21. Marama Voyage No. 24 (J.A.F. Jenkins, December 1978-January 1979).

Sample No.	G.M.T		Wind		Starting		Ending		Vessel		Approx. distance nearest land (n.ml.) \dagger	Arthropods
	Time	Date	True Dir.	Vel. (kts)	Lat.	Long.	Lat.	Long.	Speed (kts)	Course ${ }^{\circ}$		
1	0300	30.XII. 78	SSE	18	$33^{\circ} 04^{\prime} \mathrm{S}$	$175^{\circ} 29^{\prime} \mathrm{E}$	$30^{\circ} 59^{\prime} \mathrm{S}$	$175^{\circ} 47^{\prime} \mathrm{E}$	17.0	008	Cape Brett, NZ 138	1 insect part
3	2100	30.XII. 78	S	30	$29^{\circ} 15^{\prime} \mathrm{S}$	$176^{\circ} 00^{\prime} \mathrm{E}$	$25^{\circ} 56^{\prime} \mathrm{S}$	$176^{\circ} 23^{\prime} \mathrm{E}$	17.0	008	Kermadec Is 295 Hunter I 319	insect parts
5	0900	31.XII. 78	SSW	15	$24^{\circ} 48^{\prime} \mathrm{S}$	$176^{\circ} 50^{\prime} \mathrm{E}$	$22^{\circ} 27^{\prime} \mathrm{S}$	$177^{\circ} 09^{\prime} \mathrm{E}$	17.0	009	Kadavu, Fiji 202	insect parts
6	2100	31. XII. 78	WSW	05	$22^{\circ} 27^{\prime} \mathrm{S}$	$177^{\circ} 09^{\prime} \mathrm{E}$	$19^{\circ} 06^{\prime} \mathrm{S}$	$177^{\circ} 10^{\prime} \mathrm{E}$	17.0	000	Fiji 45	1 bug part
8	0300	4.I. 79	Var.	05	$15^{\circ} 50^{\prime} \mathrm{S}$	$176^{\circ} 53^{\prime} \mathrm{W}$	$15^{\circ} 01^{\prime} \mathrm{S}$	$175^{\circ} 02^{\prime} \mathrm{W}$	17.0	067	Niuafo'ou, Tonga 445	1 fly 1 psocid
10	0300	6.1.79	Var.	05	$14^{\circ} 30^{\prime} \mathrm{S}$	$170^{\circ} 50^{\prime} \mathrm{W}$	$15^{\circ} 55^{\prime} \mathrm{S}$	$171^{\circ} 45^{\prime} \mathrm{W}$	17.0	218	Samoa 445	1 wasp 1 fly
12	2100	6.1 .79	Var.SW	$\begin{gathered} 05 / \\ 13-24 \end{gathered}$	$17^{\circ} 13^{\prime} \mathrm{S}$	$172^{\circ} 58^{\prime} \mathrm{W}$	$19^{\circ} 44^{\prime} \mathrm{S}$	$174^{\circ} 49^{\prime} \mathrm{W}$	17.0	214/207	Tonga 45	1 psocid
15	0000	10.1. 79	NE	02	$32^{\circ} 22^{\prime} \mathrm{S}$	$177^{\circ} 31^{\prime} \mathrm{E}$	$33^{\circ} 48^{\prime} \mathrm{S}$	$176^{\circ} 37^{\prime} \mathrm{E}$	17.0	208	Cape Brett, NZ 142	1 wasp
17	0800	10.1.79	NW	05	$34^{\circ} 43^{\prime} \mathrm{S}$	$176^{\circ} 00^{\prime} \mathrm{E}$	$35^{\circ} 40^{\prime} \mathrm{S}$	$175^{\circ} 10^{\prime} \mathrm{E}$	17.0	208	New Zealand 445	2 wasps

sdsem ${ }^{\text {c }}$	Sto purjezZ M2N	602	$0 \cdot \mathrm{LI}$	ヨ，0ヤ०SLI	S，0E०§§	ヨ，$£$ ¢09LI	S，¢0っt	60	ヨS	$6 L^{\prime} \mathrm{I} \downarrow \mathrm{t}$	$0 \varepsilon L 0$	9ε
Kцıว！n¢ I												
spiude $冖$ S												
sdsem ¢	IEI ZN＇ıวఎg วdeว	602	0.41	ヨ，$£$ ¢09LI	S，S0っtE	ヨ，9EoLLI	S，0ZoZE	S0	$\cdot 18 \Lambda$	6L＇İもz	0020	¢¢
KLJ I	†ZI SI วәрешләу	802	$0^{\circ} \mathrm{LI}$	3，9E0LLI	S，0ZってE	3，6to6LI	S，Sto8て	S0	${ }^{18} \Lambda$	6L＇İをZ	006I	$\downarrow \mathcal{L}$
¿KıJ I	88 eguol＇！ЧeJel	812	$0 \cdot \mathrm{LI}$	M，6E。てLI	S，8S．91	M，ZSoILI	S，6tosI	εI	3S	6LT「02	0080	IE
KıJ I	St rours	812	$0 \cdot \mathrm{LI}$	M．ZS。ILI	S，6tosI	M．ZS．OLI	S，EEっちI	εI	S	6L＇T00	$00 \varepsilon 0$	0ε
şıed poasu！												
¿712ed ylour I												
чıош I												
¿รəŋәみ て Sว！LJ 9	St cours	$\cdot{ }^{\text {IE }}$ ¢	00／LI	e！d		M．ZE。ZLI	S،6SoEl	¢0	$\cdot \mathrm{IE} \Lambda$	6L＇İ8I	$0 \varepsilon 60$	62
ured dsem I p！ude I slied ！！ләәм												
$\begin{aligned} & \text { ıred әןəәд I } \\ & \text { әןəәq I } \end{aligned}$	St cours	§90	$0{ }^{\circ} \mathrm{LI}$	MıZEoZLI	S，6SoEI	M，IIoELI	S،ZIoカI	S0	$\cdot 1 L^{\prime} \Lambda$	6L＇İ8I	0ES0	87
Ł．ed ఫวasu！I												
slued $\mathfrak{l u}$ sııed วןวәя	exิuol st 'no,ojen!	$\varsigma 90$	$0 \cdot \mathrm{LI}$	M，IIoELI	SizIotI	M，S0osLI	S，600SI	S0	$\cdot 10 \Lambda$	6L＇I＇81	0ε \％0	$L Z$
K［J］	$\text { esuol } \frac{\text { St 'nosojen! }}{}$	190	$0 \cdot \mathrm{LI}$	M，S00SLI	S，600SI	M，9008LI	S，LIo9I	60	$\cdot \mathrm{IE} \Lambda$	6L＇I＇LI	0002	97
J．ed posu！I	St ！！！	L90／090	$0^{\circ} \mathrm{LI}$	M，9008LI	S，LIo9l	ヨ，9t06LI	S，81．LI	$60 / \downarrow \tau$	N	$6 L^{\prime} \mathrm{I}$＇LI	0060	sZ
slued posu！												
Slued KiJ $^{\text {IJ }}$												
fred ing I												
p！yde I												
$\text { sdsem } \varepsilon$	St ！$!$ H	090	$0 \cdot \mathrm{LI}$	3，9to6LI	S．81． 11	ヨ，82．8LI	SıEIo8I	60	MN	$6 L^{\circ} \mathrm{I} L I$	0010	$\dagger 2$
dSEM I	$80 Z \mathrm{ZN}$＇วde〕 पıJ0N	800	$0 \cdot \mathrm{LI}$	$\exists 1 . \%$ ¢ SLI	Silzo0E	ヨıでosLI	S，0tole	S0	K1，${ }^{\text {a }}$	$6 L^{\circ} \mathrm{T}$ ¢	0000	61
p！oosd I	St puejerZ MəN	800	$0^{\circ} \mathrm{LI}$	\exists ヨって．¢LI	S．0ヶole	GıL0○SLI	S，S0っSE	z0	IE Λ	6L＇İてI	0ع6I	81
			（Sły）					（SIY）	－1！			
	рие！ 1 sәıгәu	－ 2 Ş．noう	pəวdS	－8407	\cdots I 1	－8407	${ }_{\text {IR }}$ I	${ }^{\circ} \mathrm{P} \Lambda$	${ }^{\text {2nı }}$	ข1е¢	2w！	${ }^{\circ} \mathrm{ON}$
spodoruı．${ }^{\text {V }}$	วขueıs！p xoiddv	－${ }^{\text {os }}$		su！p		8 8！	IPIS			L＇W		गdurs

Table 23. Marama Voyage No. 30 (J.A.F. Jenkins, April 1979).

Sample No.	G.M.T		Wind		Starting		Ending		Vessel		Approx. distance nearest land (n.ml.) \dagger	Arthropods
	Time	Date	True Dir.	Vel. (kts)	Lat.	Long.	Lat.	Long.	Speed (kts)	Course ${ }^{\circ}$		
1	0345	7.IV. 79	ENE	13	$33^{\circ} 04^{\prime} \mathrm{S}$	$175^{\circ} 19^{\prime} \mathrm{E}$	$31^{\circ} 24^{\prime} \mathrm{S}$	$175^{\circ} 27^{\prime} \mathrm{E}$	17.0	006	North Cape, NZ 140	1 fly
2	0930	7.IV. 79	ExS	13	$31^{\circ} 24^{\prime} \mathrm{S}$	$175^{\circ} 27^{\prime} \mathrm{E}$	$29^{\circ} 46^{\prime} \mathrm{S}$	$175^{\circ} 38^{\prime} \mathrm{E}$	17.0	006	North Cape, NZ 223	3 flies 1 wasp
3	1945	7.IV. 79	E	09	$29^{\circ} 46^{\prime} \mathrm{S}$	$175^{\circ} 38^{\prime} \mathrm{E}$	$26^{\circ} 49^{\prime} \mathrm{S}$	$175^{\circ} 59^{\prime} \mathrm{E}$	17.0	007	Kermadec Is 305	1 fly
4	0310	8.IV. 79	SE	15	$26^{\circ} 49^{\prime} \mathrm{S}$	$175^{\circ} 59^{\prime} \mathrm{E}$	$24^{\circ} 45^{\prime} \mathrm{S}$	$176^{\circ} 15^{\prime} \mathrm{E}$	17.0	007	Hunter I 275	1 fly
5	1010	8.IV. 79	SE	15	$24^{\circ} 45^{\prime} \mathrm{S}$	$176^{\circ} 15^{\prime} \mathrm{E}$	$22^{\circ} 50^{\prime} \mathrm{S}$	$176^{\circ} 35^{\prime} \mathrm{E}$	17.0	007	Kadavu, Fiji 236 Hunter I 255	1 fly part
6	2100	8.1V. 79	SSE	15	$22^{\circ} 50^{\prime} \mathrm{S}$	$176^{\circ} 35^{\prime} \mathrm{E}$	$19^{\circ} 51^{\prime} \mathrm{S}$	$176^{\circ} 55^{\prime} \mathrm{E}$	17.0	006	Kadavu, Fiji 77	1 fly
7	0350	9.IV. 79	SSE	18	$19^{\circ} 51^{\prime} \mathrm{S}$	$176^{\circ} 55^{\prime} \mathrm{E}$	$18^{\circ} 02^{\prime} \mathrm{S}$	$177^{\circ} 08^{\prime} \mathrm{E}$	17.0	010	Fiji 445	fly parts
8	0500	14.IV. 79	SExE	09	$14^{\circ} 27^{\prime} \mathrm{S}$	$170^{\circ} 47^{\prime} \mathrm{W}$	$15^{\circ} 34^{\prime} \mathrm{S}$	$171^{\circ} 42^{\prime} \mathrm{W}$	17.0	218	Samoa 445	1 fly
9	0900	14.IV. 79	SSE	13	$15^{\circ} 34^{\prime} \mathrm{S}$	$171^{\circ} 42^{\prime} \mathrm{W}$	$16^{\circ} 27^{\prime} \mathrm{S}$	$172^{\circ} 24^{\prime} \mathrm{W}$	17.0	218	Niuatoputapu, Tonga 85	insect parts
10	2000	14.IV. 79	ESE	05	$16^{\circ} 27^{\prime} \mathrm{S}$	$172{ }^{\circ} 24^{\prime} \mathrm{W}$	$18^{\circ} 55^{\prime} \mathrm{S}$	$174^{\circ} 20^{\prime} \mathrm{W}$	17.0	218/209	Tonga 445	1 wasp

Table 24. Marama Voyage No. 31 (J.A.F. Jenkins, April-May 1979).

Sample No.	G.M.T		Wind		Starting		Ending		Vessel		Approx. distance nearest land (n.ml.) \dagger	Arthropods
	Time	Date	True Dir.	Vel. (kts)	Lat.	Long.	Lat.	Long.	Speed (kts)	Course ${ }^{\circ}$		
13	0900	21.IV. 79	ESE	09	$32^{\circ} 18^{\prime} \mathrm{S}$	$175^{\circ} 22^{\prime} \mathrm{E}$	$30^{\circ} 49^{\prime} \mathrm{S}$	$175^{\circ} 32^{\prime} \mathrm{E}$	16.5	006	North Cape, NZ 170	insect parts
14	2100	21.IV. 79	ESE	09	$30^{\circ} 49^{\prime} \mathrm{S}$	$175^{\circ} 32^{\prime} \mathrm{E}$	$27^{\circ} 28^{\prime} \mathrm{S}$	$175^{\circ} 59^{\prime} \mathrm{E}$	16.5	006	North Cape, NZ 258	1 wasp part
15	0100	22.IV. 79	SE	09	$27^{\circ} 28^{\prime} \mathrm{S}$	$175^{\circ} 59^{\prime} \mathrm{E}$	$26^{\circ} 24^{\prime} \mathrm{S}$	$176^{\circ} 05^{\prime} \mathrm{E}$	16.5	006	Kermadec Is 337	1 wasp part
20	0945	25.1V. 79	SE	15/24	$17^{\circ} 43^{\prime} \mathrm{S}$	$179^{\circ} 06^{\prime} \mathrm{E}$	$16^{\circ} 54^{\prime}$ S	$179^{\circ} 30^{\prime} \mathrm{W}$	16.5	046/062	Fiji 445	1 aphid
23	1530	26.IV. 79	Var.	05	$14^{\circ} 27^{\prime} \mathrm{S}$	$173^{\circ} 53^{\prime} \mathrm{W}$	$13^{\circ} 46^{\prime} \mathrm{S}$	$171^{\circ} 45^{\prime} \mathrm{W}$	16.5	067/Var.	Samoa 445	1 moth
24	0200	1.V. 79	S	24/18	$26^{\circ} 20^{\prime} \mathrm{S}$	$178{ }^{\circ} 45^{\prime} \mathrm{W}$	$27^{\circ} 45^{\prime} \mathrm{S}$	$179^{\circ} 31^{\prime} \mathrm{W}$	16.5	208	Kermadec Is 120	1 fly

Table 25. Marama Voyage No. 32 (J.A.F. Jenkins, May 1979).

Sample No.	G.M.T		Wind		Starting		Ending		Vessel		Approx. distance nearest land (n.ml.) \dagger	Arthropods
	Time	Date	True Dir.	Vel. (kts)	Lat.	Long.	Lat.	Long.	Speed (kts)	Course ${ }^{\circ}$		
26	0400	10.V. 79	SSE	05	$18^{\circ} 06^{\prime} \mathrm{S}$	$178^{\circ} 48^{\prime} \mathrm{E}$	$17^{\circ} 04^{\prime} \mathrm{S}$	$179^{\circ} 49^{\prime} \mathrm{W}$	17.0	040/060	Fiji 445	1 fly
												1 beetle
												1 aphid
27	0900	10.V. 79	SSE	09	$17^{\circ} 04^{\prime} \mathrm{S}$	$179^{\circ} 49^{\prime} \mathrm{W}$	$16^{\circ} 27^{\prime} \mathrm{S}$	$178^{\circ} 33^{\prime} \mathrm{W}$	16.5	060/067	Fiji 45	2 flies

чduxu p！̣osd I	てZI SI эәрешдәу	802	$0 \cdot \mathrm{LI}$	M，tro6LI	S， $9 \varepsilon_{0}$ LZ	M，6E＊8LI	S．LIo9て	8I	MN	6L＇IIIN ${ }^{\text {a }}$	0010	97
KLJ I	S6 E8LuOL＇elv	802	$0^{\circ} \mathrm{LI}$	M，6E08LI	SiLIo9て	M，90．LLI	S．てカっとて	\＆I	MN	$6 L^{\prime}$ IIIIA ${ }^{\circ} \mathrm{E}$ I	0002	¢Z
＊κ［J I	St efulul			вjoje،	nyn					6L＇IIIべてI		
ydurku ploosd I	LOE I дวยйH											
$K_{\text {LJ }}$ I	乙SE SI כәрешләу	900	$0{ }^{\circ} \mathrm{LI}$	3，0109LI	S． 9 Dosz	ヨ，£0。9LI	S ， $9 S_{0} 97$	SO	$3^{3 x} 5$		¢100	91
syduxu ploosd τ												
KIf I	¢¢Z ZN＇ade〕 पıION	900	$0 \cdot \mathrm{LI}$	ヨıてカ。SLI	S，SS．6Z		S．0Iole	60	MS	6L＇IIIA ${ }^{\circ} \mathrm{t}$	0060	$\dagger 1$
Sว！1］	ヤLI ZN＇วdeว प1．10N	900	$0 \cdot \mathrm{LI}$	ヨıてE0SLI	S，OIoIE	ヨıSZosLI	S．LIoze	$\varepsilon 1$	MSS	6L＇IIIA ${ }^{\text {b }}$	0eto	£1
KIJ I EZI ZN＇HวIg วdeว		900	$0^{\circ} \mathrm{LI}$	ヨ，¢て。SLI	SıLIoze	ヨ，810SLI	SıLIoEE	60	MS	6L＇IIIA \dagger	0ع00	21
spodoxyl． V		－2s．noว pardS ${ }^{[2 S S}{ }^{2} \Lambda$		－8407		－8u07	$\cdots 1$	$\begin{aligned} & (S 1 Y) \\ & \cdot[\partial \Lambda \end{aligned}$	－！！	ว1eg วuti		$\begin{gathered} \text { 'ON } \\ \text { गdures } \end{gathered}$
	рие！ 152 Ieวu			วก1								
	әuels！p＇xoıddV											

Table 28. Marama Voyage No. 42 (J.A.F. Jenkins, September-October 1979).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Sample No.} \& \multicolumn{2}{|r|}{G.M.T} \& \multicolumn{2}{|c|}{Wind} \& \multicolumn{2}{|r|}{Starting} \& \multicolumn{2}{|l|}{Ending} \& \multicolumn{2}{|r|}{Vessel} \& \multirow[t]{2}{*}{Approx. distance nearest land (n.ml.) \dagger} \& \multirow[t]{2}{*}{Arthropods}

\hline \& Time \& Date \& True Dir. \& Vel. (kts) \& Lat. \& Long. \& Lat. \& Long. \& Speed (kts) \& Course ${ }^{\circ}$ \& \&

\hline 1 \& 0100 \& 29.IX. 79 \& SE \& 09 \& $33^{\circ} 05^{\prime} \mathrm{S}$ \& $175^{\circ} 19^{\prime} \mathrm{E}$ \& $31^{\circ} 56^{\prime} \mathrm{S}$ \& $175^{\circ} 25^{\prime} \mathrm{E}$ \& 16.8 \& 006 \& North Cape, NZ 142 \& 3 flies

\hline 4 \& 2100 \& 29.IX. 79 \& SxE \& 18 \& $29^{\circ} 10^{\prime} \mathrm{S}$ \& $175^{\circ} 46^{\prime} \mathrm{E}$ \& $26^{\circ} 25^{\prime} \mathrm{S}$ \& $176^{\circ} 05^{\prime} \mathrm{E}$ \& 16.5 \& 006 \& Kermadec Is 300 \& 1 psocid
1 fly

\hline 5 \& 0100 \& 30.IX. 79 \& SExE \& 20 \& $26^{\circ} 25^{\prime}$ S \& $176^{\circ} 05^{\prime} \mathrm{E}$ \& $25^{\circ} 10^{\prime} \mathrm{S}$ \& $$
176^{\circ} 13^{\prime} \mathrm{E}
$$ \& 16.5 \& 006 \& Hunter I 273 \& 1 fly

\hline 7 \& 1945 \& 30.IX. 79 \& ESE \& 05 \& $24^{\circ} 23^{\prime} \mathrm{S}$ \& $176^{\circ} 17^{\prime} \mathrm{E}$ \& $20^{\circ} 18^{\prime} \mathrm{S}$ \& $176^{\circ} 41^{\prime} \mathrm{E}$ \& 17.0 \& 007 \& Kadavu, Fiji 105 \& 2 flies

\hline 10 \& 0430 \& 3.X. 79 \& \& \& \& \& \& \& \& \& \& 1 fly part 1 insect part

\hline 10 \& 0430 \& $3 . \times .79$

3.79 \& ExN \& 09 \& $18^{\circ} 12^{\prime} \mathrm{S}$ \& $178^{\circ} 24^{\prime} \mathrm{E}$ \& $17^{\circ} 15^{\prime} \mathrm{S}$ \& $179^{\circ} 50^{\prime} \mathrm{E}$ \& 16.0 \& 040/060 \& Fiji 45 \& 1 wasp 1 aphid 1 fly?

\hline 12 \& 1900 \& 3.X. 79 \& E \& 05 \& $16^{\circ} 34^{\prime} \mathrm{S}$ \& $1788^{\circ} 49^{\prime} \mathrm{W}$ \& $15^{\circ} 35^{\prime} \mathrm{S}$ \& $176^{\circ} 31^{\prime} \mathrm{W}$ \& 16.5 \& 067 \& Fiji 445 \& 1 wasp

\hline $$
\begin{aligned}
& 18 \\
& 19
\end{aligned}
$$ \& \[

1900

\] \& \[

$$
\begin{aligned}
& \text { 6.X. } 79 \\
& 6 . \times 79
\end{aligned}
$$

\] \& | ExN |
| :--- |
| ExN | \& 05 \& $16^{\circ} 31^{\prime} \mathrm{S}$ \& $172^{\circ} 27^{\prime} \mathrm{W}$ \& $18^{\circ} 37^{\prime} \mathrm{S}$ \& $174^{\circ} 12^{\prime} \mathrm{W}$ \& \[

16.5

\] \& \[

218
\] \& Tonga 445 \& 1 wasp

\hline 19

20 \& $$
\begin{aligned}
& 2330 \\
& 0400
\end{aligned}
$$ \& $6 . X .79$

$7 \times .79$ \& ExN \& 09
09 \& $18^{\circ} 37^{\prime} \mathrm{S}$

$19^{\circ} 43^{\prime} \mathrm{S}$ \& $174^{\circ} 12^{\prime} \mathrm{W}$ \& $19^{\circ} 43^{\prime} \mathrm{S}$ \& $1744^{\circ} 36^{\prime} \mathrm{W}$ \& \[
16.5

\] \& \[

207
\] \& Tonga 45 \& insect parts

\hline 20 \& 0400 \& 7.X. 79 \& ExN \& 09 \& $19^{\circ} 43^{\prime} \mathrm{S}$ \& $174^{\circ} 36^{\prime} \mathrm{W}$ \& $20^{\circ} 50^{\prime} \mathrm{S}$ \& $175{ }^{\circ} 12^{\prime} \mathrm{W}$ \& 16.5 \& 207/180 \& Tonga 445 \& 1 wasp

\hline 21 \& 2000 \& 8.X. 79 \& NE \& 05 \& $23^{\circ} 20^{\prime} \mathrm{S}$ \& $176^{\circ} 56^{\prime} \mathrm{W}$ \& $25^{\circ} 57^{\prime} \mathrm{S}$ \& $178^{\circ} 26^{\prime} \mathrm{W}$ \& 16.5 \& 208 \& \& insect parts
1 fly

\hline 22 \& 0100 \& 9.X. 79 \& NNE \& 09 \& $25^{\circ} 57$ S \& $178^{\circ} 26^{\prime} \mathrm{W}$ \& $27^{\circ} 16^{\prime} \mathrm{S}$ \& $179^{\circ} 12^{\prime} \mathrm{W}$ \& 16.5 \& 208 \& Kermadec Is 135 \& $$
1 \text { fly }
$$

\hline
\end{tabular}

Table 29. Marama Voyage No. 43 (J.A.F. Jenkins, October 1979).

Sample No.	G.M.T		Wind		Starting		Ending		Vessel		Approx. distance nearest land (n.ml.) \dagger	Arthropods
	Time	Date	True Dir.	Vel. (kts)	Lat.	Long.	Lat.	Long.	Speed (kts)	Course ${ }^{\circ}$		
25	1000	21.X. 79	SW	09	$24^{\circ} 25^{\prime} \mathrm{S}$	$176^{\circ} 25^{\prime} \mathrm{E}$	$23^{\circ} 21^{\prime} \mathrm{S}$	$176^{\circ} 30^{\prime} \mathrm{E}$	16.0	007	Hunter I 255 Kadavu, Fiji 260	1 fly insect parts

$$
\begin{aligned}
& \text { ¢て-乙 so.nsity of Kəy }
\end{aligned}
$$

[^1]

Figs. 2-5. Successful net runs and collections on Union South Pacific voyages. 2. Voyage No. 19 (May 1974). 3. Voyage No. 20 (May-June 1974). 4. Voyage No. 28 (Oct. 1974). 5. Voyage No. 31 (Dec. 1974).

Figs. 6-9. Successful net runs and collections on Union South Pacific voyages. 6. Voyage No. 32 (Dec. 1974-Jan. 1975). 7. Voyage No. 35 (Feb.-March 1975). 8. Voyage No. 36 (March 1975). 9. Voyage No. 39 (May 1975).

Figs. 10-13. 10. Successful net runs and collections on Union South Pacific Voyage No. 40 (May 1975). 11-13. Successful net runs and collections on Marama voyages. 11. Voyage No. 1 (Jan. 1978). 12. Voyages No's. 4, 5 (March 1978). 13. Voyage No. 6 (March-April

Figs. 14-17. Successful net runs and collections on Marama voyages. 14. Voyage No. 10 (June 1978). 15. Voyage No. 11 (June 1978). 16. Voyages No. 12 (June-July 1978), No. 13 (July 1978). 17. Voyages No. 15 (Aug. 1978), No. 17 (Sept. 1978).

Figs. 18-21. Successful net runs and collections on Marama voyages. 18. Voyage No. 24 (Dec. 1978-Jan. 1979). 19. Voyage No. 25 (Jan. 1979). 20. Voyage No. 30 (April 1979). 21.

Figs. 22-25. Successful net runs and collections on Marama voyages. 22. Voyage No. 37
(July-Aug. 1979). 23. Voyage No. 38 (Aug. 1979). 24. Voyages No. 42 (Sept-Oct. 1979), No. 43 (Oct. 1979). 25. Voyage No. 46 (Dec. 1979).

ARTHROPOD FAUNA

Many bugs including aphids (Hemiptera), beetles (Coleoptera), moths (Lepidoptera), flies (Diptera), parasitic and social wasps and winged ants (Hymenoptera), and insect parts were taken in the nets. Also in the nets were psocids (Psocoptera), lacewings (Neuroptera), thrips (Thysanoptera), one small butterfly (Lepidoptera) and insect exuviae. A few wingless specimens, an ant (Hymenoptera), spiders (Araneae) and an amphipod (Crustacea), may have crawled into nets before they were set.

Many other specimens were hand collected on the ships, particularly after leaving New Zealand and after visiting ports in the Pacific Islands: earwigs (Dermaptera) a cockroach (Blattodea), bugs (Hemiptera), beetles (Coleoptera), moths and butterflies (Lepidoptera), flies (Diptera), parasitic and social wasps, a winged ant and a bee (Hymenoptera), spiders (Araneae) and a centipede (Chilopoda).

Acknowledgements. The late Dr J. Linsley Gressitt. Chairman. Entomology Department. Bernice P. Bishop Museum. Honolulu, Hawaii, initiated the insect dispersal projects which have supplied so much biogeographical information. The opportunity to work with him is still much appreciated and the current studies are seen as a continuation of his work.

The Auckland Museum Entomology Department project would not have been possible without the impetus and action of Captain J.A.F. Jenkins, who has continued the trapping of insects at sea over many years. John Jenkins has personally attended to the taking and care of samples and concurrent recording of data, and also to maintenance of nets and net rings. He has kindly checked data, re-drawn maps and answered innumerable questions, all of which assisted greatly in the production of this paper.

The use of Union Steamship Company ships for this project is also acknowledged. Mr N.G. Cheshire, Deck Officer, assisted by drafting original maps. Many crew members on the ships have assisted with the handling of nets and the collection of specimens.

Ms Caroline Phillips, Auckland, has prepared the figures for publication.

REFERENCES

Clagg. H.B.
1966 Trapping of air-borne insects in the Atlantic-Antarctic area, Pacific Ins. 8(2): 455466.

Forster. R.R.
1971 Notes on an air-borne spider. Pacific Ins Monogr. 25: 119-120.
Gressitr. J.L.
1961 Problems in the zoogeography of Pacific and Antarctic insects. Pacific Ins. Monogr. 2: 1-94.
1964a Ecology and biogeography of land arthropods in Antarctica. SCAR Symposium on Antarctic Biology, Paris, 1962. pp.211-222.
1964b Insects of Campbell Island. Summary. Pacific Ins. Monogr. 7: 531-600.
1965a Biogeography and ecology of land arthropods of Antarctica. Monogr. Biol. 15: 431490.

1965b Terrestrial animals. In T. Hatherton (Ed.), Antarctica. Reed. Wellington. $511 \mathrm{p} . \mathrm{pp}$. 351-371.
1967 Entomology of Antarctica. Introduction. All. Res. Ser. 10: 1-33.
1970 Subantarctic entomology and biogeography, Pacific Ins. Monogr. 23: 295-374.
1974 Insect biogeography. Ann.Rev. Ent. 19: 293-321.

Gressitt, J.L., J.Coatsworth and C.M. Yoshimoto
1962 Air-borne insects trapped on "Monsoon Expedition". Pacific Ins. 4(2): 319-323.
Gressitt, J.L., R.E. Leech, T.S. Leech, J. Sedlacek and K.A.J. Wise
1961 Trapping of air-borne insects in the antarctic area (Part 2). Pacific Ins. 3(4): 559-562.
Gressitt. J.L., R.E. Leech and C.W. O'Brien
1960 Trapping of air-borne insects in the antarctic area. Pacific Ins. 2(2): 245-250.
Gressitt, J.L., R.E. Leech and K.A.J. Wise
1963 Entomological investigations in Antarctica. Pacific Ins. 5(1): 287-304.
Gressitt, J.L., and S. Nakata
1958 Trapping of air-borne insects on ships on the Pacific. Proc. Hawaiian Ent. Soc. 16(3): 363-365.
Gressitt, J.L., J. Sedlacek, K.A.J. Wise and C.M. Yoshimoto
1961 A high speed airplane trap for air-borne organisms. Pacific Ins. 3(4): 549-555.
Gressitt, J.L., and C.M. Yoshimoto
1963 Dispersal of animals in the Pacific. Pacific Basin Biogeography. A symposium. Tenth Pacific Science Congress, Honolulu, Hawaii, 1961, pp. 283-292.
1974 Insect dispersal studies in northern Alaska. Pacific Ins. 16(1): 11-30.
Gullmette, J.E., Jr., E.P. Holzapfel and D.M. Tsuda
1970 Trapping of air-borne insects on ships in the Pacific, Part 8. Pacific Ins. 12(2): 303-325.
Harrell, J.C., and E. Holzapfel
1966 Trapping air-borne insects on ships in the Pacific, Part 6. Pacific Ins. 8(1): 33-42.
Harrell, J.C., and C.M. Yoshimoto
1964 Trapping of air-borne insects on ships on the Pacific, Part 5. Pacific Ins. 6(2): 274282.

Holzapfel. E.P.
1978 Transoceanic airplane sampling for organisms and particles. Pacific Ins. 18(3-4): 169-189.
Holzapfel, E.P., H.B. Clagg and M. L Goff
1978 Trapping of air-borne insects on ships on the Pacific, Part 9. Pacific Ins. 19(1): 65-90.
Holzapfel, E.P., and J.L. Gressitt
1965 Airplane trapping of organisms and particles. Proc. Atmos. Biol Conf., Minneapolis, 1964. pp. 151-163.

Holzapfel, E.P., and J.C. Harrell
1968 Transoceanic dispersal studies of insects. Pacific Ins. 10(1): 115-153.
Holzapfel, E.P.. and B.D. Perkins, Jr.
1969 Trapping of air-borne insects on ships in the Pacific, Part 7. Pacific Ins. 11(2): 455-476.
Holzapfel, E.P., D.M. Tsuda and J.C. Harrell
1970 Trapping of air-borne insects in the antarctic area (Part 3). Pacific Ins. 12(1): 133-156.
Kramer, C.L., and E.P. Holzapfel
1973 Air biota of the upper atmosphere over the Pacific and continental United States. Agric. Meteorol. 12: 83-93.
Kramer. C.L., J. Wartell and E.P. Holzapfel
1973 Surface level trapping of air biota on the Pacific Ocean. Agric. Meteorol. 12: 49-64.
PRYOR, M.E.
1962 Some environmental features of Hallett Station, Antarctica, with special reference to soil arthropods. Pacific Ins. 4(3): 681-728.

Scudder, G.G.E.
1968 Air-borne Lygaeidae (Hemiptera) trapped over the Atlantic, Indian and Pacific Oceans, with the description of a new species of Appolonius Distant. Pacific Ins. 10(1): 155-160.
Thornton, I.W.B.
1964 Air-borne Psocoptera trapped on ships and aircraft. Pacific Ins. 6(2): 285-291.
Thornton. I.W.B., and J.C. Harrell
1965 Air-borne Psocoptera trapped on ships and aircraft, 2-Pacific ship trappings, 1963-64. Pacific Ins. 7(4): 700-702.
WISE, K.A.J.
1971 Trapping of air-borne insects on HMNZS Endeavour in the south-west Pacific, during the Cook Bicentenary Expedition, 1969. R.Soc. N.Z. Bull. 8: 65-66.
Yoshimoto, C.M., and J.L. Gressitt
1959 Trapping of air-borne insects on ships on the Pacific (Part II). Proc. Hawaiian Ent. Soc. 17(1): 150-155.
1960 Trapping of air-borne insects on ships on the Pacific (Part 3). Pacific Ins. 2(2): 239-243.
1961 Trapping of air-borne insects on ships on the Pacific (Part 4). Pacific Ins. 3(4): 556-558.
1963 Trapping of air-borne insects in the Pacific-Antarctic area, 2. Pacific Ins. 5(4): 873883.

1964 Dispersal studies on Aphididae, Agromyzidae and Cynipoidea. Pacific Ins. 6(3): 525-531.
1965 Dispersal studies on Aphididae, Agromyzidae and Cynipoidea. Proc. XII Int. Congr.Ent., London, 1964. pp. 417.
Yoshimoto, C.M., J.L. Gressitt and C.J. Mitchell
1962 Trapping of air-borne insects in the Pacific-Antarctic area, 1. Pacific Ins. 4(4): 847858.

Yoshimoto, C.M., J.L. Gressitt and T. Wolff
1962 Air-borne insects from the Galathea Expedition. Pacific Ins. 4(2): 269-291.

Zimmerman, E.

1975 Curculionidae captured on ships and aircraft on or over the Indian and Pacific Oceans. Pacific Ins. 16(4): 380-382.

[^0]: \dagger Two numbered samples were taken from one net run \ddagger Collections made for J. A. F. Jenkins who was not on board for these voyages

[^1]:

